看看大视频行业的视频网站是怎样选购和生产节目的。美国互联网巨头亚马逊发布了由其原创内容团队“亚马逊工作室”(Amazon Studios)制作的14部原创电视剧试映集(pilotepisode),允许美国和英国用户买免费观看。电视剧试映集是制作方把一个项目发展为正式剧集之前所开发的样品集,是电视剧集开发过程中的早期阶段。网络用户观看这些试映集,然后投票,亚马逊再根据反馈决定哪些节目可以继续开发,使之成为一部完整的电视剧,最终提供给“亚马逊金牌”(Amazon Prime)付费用户。此外,在初期的剧本写作阶段,亚马逊在线接受电视剧本,并邀请消费者进行评价,然后根据反馈信息选择将要拍摄的项目。 如果说亚马逊工作室还只是基于网民反馈作出评价的话,视频网站Netflix的《纸牌屋》则是成功利用了大数据进行节目生产。《纸牌屋》这部白宫版宫斗戏,是视频网站Netflix的首部原创剧,在美国和其他40个国家及地区成为网络点播率最高的剧集。国内得到独家版权的搜狐视频上线该剧20天后,播放量超343万次,被称为美国版的《甄嬛传》。Netflix拥有2900万名订阅用户,也拥有用户收看习惯和口味偏好的强大数据库。Netflix对用户评分、观看记录和用户好友推荐等信息进行深度挖掘,甚至收集观众按下暂停或快进的数据,从而找出用户喜欢的视频风格,导演或演员等信息。Netflix基于上述这些海量用户信息来决定内容的生产。因此,《纸牌屋》被称为算出来的电视剧,它的成功是大数据与大视频行业联姻的成功。《纸牌屋》的生产过程完全绕开了美国传统电视的生态环境,《福布斯》杂志对其评价是“它不仅仅是很棒的节目,而且是电视史上的大事件”。
再回到传统电视行业,在大数据时代,内容提供商、电视台、广告商以及数据调查公司原本形成的稳固生态链开始被打破。视频网站、IPTV和OTT TV等基于互联网的视频运营商掌握了大量用户信息,这些信息可以被挖掘,从而进行产业链上下游的拓展。 在上游的内容生产领域,内容生产的模式由传统的B2C模式转变成C2B模式,我们通过了解用户的喜好、兴趣点以及用户行为来定制内容,真正做到用户 想看什么,就提供什么。这也就解释了国内外的视频网站纷纷进入内容原创领域的原因。在国内,乐视公司成立了乐视影业,盛大文学也成立编剧公司,依托“大数据”创作电视剧本。 在下游的收视评估环节,由于视频运营商掌握了海量和精确的用户和收视数据,原本就充满争议的样本抽样模式开始过时。广告主们虽然坚信尼尔森和索福瑞们的真实性,但也开始逐步采纳运营商的精确数据。如此一来,尼尔森和索福瑞的抽样数据市场将逐步萎缩,数据市场将从抽样模式进入到精确模式。 但尼尔森们也在与时俱进。2013年,尼尔森决定扩大对收视率的定义,不再局限于传统电视网络,推出一个针对OTT互联网电视以及微软Xbox、苹果iPad等多屏的收视率调查系统。尼尔森计划在2万3000多户采样家庭安装新的硬软件统计工具,其中仅有75%来自传统电视网络。但尼尔森的与时俱进,还是建立在基于样本户抽样调查的基础之上,是否能够延缓抽样调查行业的衰落尚难定论,但尼尔森和索福瑞们的消亡,恐怕也只是时间早晚问题。 在下游的另外一个领域是与收视数据紧密相关的广告市场。传统电视是免费商业模式的开创者,即向观众提供免费的节目,然后用观众的注意力换取广告主投放,并获取广告收入,在这个过程中,收视率成为各方通用的交换货币。但大数据的应用将彻底改变这种商业模式,传统的收视率受到质疑,广告商、电视台和数据商多年形成的铁三角关系也将被打破。 大数据最主要的应用是能够挖掘出内在的关联关系。早在上世纪90年代,沃尔玛就凭借遍布全球的卫星信息系统,把关联关系应用于购物篮(market basket analysis)中,可以说是大数据商用的鼻祖。刊登在1998年《哈佛商业评论》上的“啤酒与尿布”故事已经成为全世界MBA的经典教学案例并广为流传。这个故事是这样的:20世纪90年代,沃尔玛的管理人员分析销售数据时发现了一个令人难于理解的现象,“啤酒”与“尿布”两件看上去毫无关系的商品会经常出现在同一个购物篮中。经调查发现,这种现象出现在年轻的父亲身上。最终的原因是,在美国有婴儿的家庭中,一般是母亲在家中照看婴儿,年轻的父亲前去 超市购买尿布。父亲在购买尿布的同时,往往会顺便为自己购买啤酒。 沃尔玛的大数据是建立在这家零售业帝国遍布全球的庞大信息系统之上,而基于开放互联网的大数据,为很多行业的直接应用提供了便利。同上述“啤酒与尿布”案例不同的是,大数据中的关联关系是很难找到直接原因的,但这并不影响这种关联关系被应用到商业中。在电视行业,大数据的关联信息为广告的定向推送和O2O模式的电子商务留下了发展空间,从而重新定义了电视的商业模式,也给电视的未来发展模式留下了很大的想象空间。 ..
|