移动互联、社交网络、电子商务等极大地拓展了互联网的边界和应用范围,各种数据正在迅速膨胀并变大,大数据应用随之迅猛发展。但与此同时,国内外数据泄露事件频发,用户隐私受到极大挑战,在数据驱动环境下,网络攻击也更多地转向存储重要敏感信息的信息化系统。在此背景下,安全已成为影响大数据应用发展的重要因素之一,大数据安全防护成为大数据应用发展的一项重要课题。
大数据应用安全挑战 大数据具有容量大、类型多、价值高、速度快的4V特性。由于大量数据集中存储,一次成功攻击所导致的损失巨大,因此大数据应用更容易成为攻击目标。同时,大数据时代数据源多样化,数据对象范围与分布更为广泛,对数据的安全保护更为困难。大数据应用采用全新的Hadoop处理架构,内在安全机制仍不完善,因此在推动大数据技术应用时面临着很多安全风险和挑战。
具体包括: 第一,用户隐私泄露问题随着大数据技术应用的深入将更为严重。
第二,大数据应用信息安全暴露点增多。
第三,大数据应用中数据往往穿越原有系统数据保护边界,数据属主与权限随之发生迁移,导致原有数据保护方案失效。
第四,大数据应用存在大量外界数据接口,加大了数据安全风险。第五,大数据引入Hadoop等新的技术体系,带来新的安全漏洞与风险。
此外,大数据应用仍面临传统IT系统中存在的安全技术与管理风险,流量攻击、病毒、木马、口令破解、身份仿冒等各类攻击行为对大数据应用仍然有效,系统漏洞、配置脆弱性、管理脆弱性等问题在大数据环境中仍然存在。
大数据应用安全对策 大数据应用的核心资源是数据,对敏感数据的安全保护成为大数据应用安全的重中之重。同时大数据运行环境涉及网络、主机、应用、计算资源、存储资源等各个层面,需要具备纵深的安全防护手段。因此,面对上述大数据应用的安全挑战,在进行大数据应用安全防护时应注重两大核心:隐私保护与计算环境安全防护。
其一,通过重构分级访问控制机制、解构敏感数据关联、实施数据全生命周期安全防护,增强大数据应用隐私保护能力。
大数据应用中往往通过对采集到的数据进行用户PII(Personal Identifiable Information,个人可标识信息)与UL(User Label,用户标签)信息分析,部分大数据应用进一步分析PII与UI关联信息,从而进行定向精准营销等应用,这类应用对隐私侵害的影响最大,因此PII与UL两者关联信息是大数据隐私保护的重点,同时由于PII直接关联各类用户信息,也是大数据隐私保护的重点。
在大数据隐私保护中,应基于PII与UL等数据的敏感度进行分级,进而重构数据安全访问控制机制。将原始数据、UL数据、PII数据及PII与UL关联数据按安全等级由低到高进行分类,并根据安全需求实施用户身份访问控制、加密等不同等级安全策略,限制数据访问范围。同时在大数据运营中应尽可能实现PII数据与个人属性数据的解构,将PII数据与UL数据分开存储,并为PII数据建立索引,将UL与PII的关联通过索引表完成,黑客即使获得UL信息,也无法获得用户的PII信息及对应关系,同时对索引表进行加密存储,黑客即使获得索引表,也无法得到用户的PII信息。
其二,做好大数据应用计算平台、分布式探针、网络与主机等基础设施安全防护,提升大数据计算环境安全防御水平。 ..
|