OA | 项目 | 合同 | 知识 | 档案 | CRM | KM | ERP |  设备 |  专题       
伟创首页 易企管 定制软件 解决方案 经典案例 行业资讯
关于我们  |  联系我们  | 400-0906-395

伟创软件:办公软件专家

+ 企业信息化咨询顾问      + 办公软件集成方案      + 企业信息化解决方案     
+ 数据集成及安全方案      + 数据挖掘解决方案      + 移动办公及云办公     
当前位置: 伟创软件 -> 软件服务 -> 大数据挖掘的粒计算理论与方法

OA协同办公系统

“云物联网”成云计算下一个战场

伟创软件 -> OA协同办公系统
万物互联时代已经到来,智能设备、传感器、可穿戴设备和移动APP的数量在成几何级数增长,随之产生的物联网大数据的汇集和处理成为物联网应用的关键环节。如今,越来越多的物联网应用选择云计算平台来提供大数据存储、数据可视化、数据挖掘甚至预测分析服务。..

浅析培训学校的管理系统

伟创软件 -> OA协同办公系统
在北京,上海,广州,经常都听到培训机构的校长问,如今被炒的那么火热的培训机构管理软件到底有什么好处,如果我带入到机构的日常管理中能够帮助我做什么呢?..

高校教学中的数据挖掘

伟创软件 -> OA协同办公系统
数据挖掘(Data Mining)是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程,应用数据挖掘来进行教务数据处理,可以发掘其中蕴含的规律,把这些规律运用到教育教学管理中,将有助于教育教学改革,提高办学水平及管理水平。..


更多文章..

大数据挖掘的粒计算理论与方法

作者:佚名  来源:网络
导语:粒计算是专门研究基于粒结构的思维方式、问题求解方法、信息处理模式的理论、方法、技术和工具的学科,是当前智能信息处理领域中一种新的计算范式。从人工智能角度来看,粒计算是模拟人类思考和解决大规模复杂问题的自然模式,从实际问题的需要出发,用可行的满意近似解替代精确解,达到对问题的简化、提高问题求解效率等目的。

    从数据分析与处理层面看,粒计算通过将复杂数据进行信息粒化,用信息粒代替样本作为计算的基本单元,可大大提高计算效率。粒计算主要包括数据粒化、多粒度模式发现与融合、多粒度/跨粒度推理等核心研究内容。大数据的表现性态、大数据挖掘面临的挑战、基于大数据的复杂问题建模与粒计算框架的契合之处主要表现在以下3个方面。

    1、大数据经常具有多层次/多粒度特性

    1990年,我国著名科学家钱学森先生在其论文《一个科学新领域|| 开放的复杂巨系统及其方法》 中就指出: \只有一个层次或没有层次结构的事物称为简单的系统, 而子系统种类很多且有层次结构,它们之间关联关系又很复杂的系统称为复杂巨系统。任何一个复杂系统都是一个具有层次结构的系统"。Friedman 等在Science上发表的论文认为在诸如复杂细胞网络、蛋白质互作用网络等生物大数据中都广泛存在着多层次、多尺度特性。Clauset 等在Nature上发表的论文也指出,在复杂社会网络中也存在天然的层次结构。Ahn等则专门研究了大数据的多尺度复杂性。著名社会网络科学家Watts 在其提出的小世界网络研究中,也指出网络中嵌套的诸多社区内部也满足小世界网络的要求。大数据往往来自于对复杂的自然/人工巨系统的观测记录,或者由人类社会系统借助网络自主产生。这就意味着,反映复杂巨系统形态及运动规律的大数据必然隐含着由这些系统所决定的局部与整体关系,以及复杂的层次结构,即数据的多粒度/多层次特性。

    2、挖掘任务通常呈现多层次/多粒度特性

    数据挖掘总是面向实际应用的,即使面对同一个数据集,用户需求的多层次/多粒度特性也决定了挖掘任务的多层次/多粒度特性。比如,在金融大数据领域,决策任务可能是面向国家层面、区域层面,或者是地方层面的,甚至是面向某个银行的;也可能是面向不同种类的存款、贷款,或理财产品。这就使得挖掘任务可能同时面向不同层面、不同方面。挖掘任务的多层次/多粒度特性必然要求数据挖掘工具不仅能够从不同视角探索大数据不同层面隐含的模式,而且还能够进行复杂有效的融合、自动的跳转,以及便捷的定制。

    3、大数据挖掘要求算法具有高效近似求解性

    在2012年出版的大数据著作《大数据时代: 生活、工作与思维的大变革》 中指出:大数据意味着所有数据。大数据是指无法在一定时间内用常规软件工具对其内容进行抓取、管理和处理的数据集合。因此,大数据挖掘首先要解决\大数据能算的问题",这就要求对大数据进行合理的分解,即大数据集的粒化,然后采用并行处理策略, MapReduce 正是基于这种策略在大数据管理方面的实践结果。

    基于大数据的复杂问题建模往往具有极其复杂的结构,这就要求大数据挖掘算法能够按照任务的要求自动地或人机交互地从大数据中抽取与组织出具有多层次/多局部特征的结构,并能在这种复杂结构上进行推理,以达到挖掘的预期目标。

    大数据挖掘算法的高效近似求解特性,主要来自于用户对挖掘过程、挖掘结果的时效性要求,大数据的巨量增长性对在线挖掘技术提出了严峻挑战。与传统的小数据集上的挖掘与学习不同,大数据的混杂性、不确定性,以及高噪声对\独立同分布假设" 的破坏使得追求问题的最优/精确解变得几乎不可能,迫使我们转向寻找问题的满意近似解。另一方面,满意近似解在很多环境下已能很好地满足实际应用的需要,无需一味追求问题的最优/精确解。

    综上分析可知,从隐含于大数据中的结构特征,大数据挖掘任务的类型特征,到大数据挖掘算法的性能特征,综合这些角度,大数据挖掘的计算框架与粒计算所蕴含的计算范式具有高度契合性。鉴于这一认识,可以推测: 粒计算将为大数据挖掘提供一条极具前途的崭新途径。


专业定制软件/服务
OA协同办公系统 ERP企业资源计划 CRM客户管理系统 KM知识管理系统 项目管理系统
合同管理系统 HR人力管理系统 进销存管理系统 流程管理系统 档案管理系统
 
关键词: OA  ERP  CRM  KM  HR  合同  ERP  流程  档案  设备  考勤  项目  协同  知识  移动  OA概念  工会  施工  车辆  行政  资产  供应商  物业  工程  工时  不动产  国有资产  自建房  宅基地  公租房  国有不动产 
 
热线电话:400-0906-395  伟创软件-办公软件专家 All Rights Reserved. 资讯专题  行业专题  伟创软件  京ICP备17005839号 
项目 | 设备 | 知识 | 合同 | 档案 | 物业 | 工程 | OA |